
Python Programming

Nov 3, 2017

“	Da	Vinci	Code	World	”	
A	Information	Encryption	Blog	System	based	on	Python		

Eve Thullen, Claremont Graduate University & Harvey Mudd College

1. Project Background:
Let’s called this project Da Vinci Code World. It’s website that the user could post text message,
that the user wants to hidden real message behind those text for different reasons, such as
avoiding web censorship and monitoring system, or the user want to deliver important message
to specific people. In a world, it’s a website for specific people share secrets.

2. Project Description:
1. A website written by python and connected to database, that the user can register an account
and login.
2. User can post text or articles. Those text is encrypted, and the same time an encryption key
been created for each post. The algorithm written by python
3. Readers can add comments to the article.
4. Readers can require key to decrypt the message.

3. Project Platform and Structure:
1. Python code to connect Apache and database Postgres together
2. Python and Pesto to generate HTML to display to the user

�

- Project Language:
Python
HTML
SQL

- Platform and Frame:
Database: PostgreSQL 9.6.5
Server: Apache 2
Python: 2.7

- Python Library to Use:
mod_wsgi (Python based Web Application Run on Apache)
Pesto (HTML interface)
pgdb (database interface)

4. Project Installation:
- Platform and Frame Installation:

1. PostgreSQL 9.6.5 installation: https://www.postgresql.org/download/macosx/

Set up pg_config path: /users/yingfenhuang/PostgreSQL/pg96/bin
 $ export PG_HOME=/users/yingfenhuang/PostgreSQL/pg96

 $ export PATH=$PATH:$PG_HOME/bin
,
2. Apache 2: MacOS built in Apache 2

3. Python 2.7.14, https://www.python.org/downloads/

- Python Library Installation:

1. mod_wsgi 4.5.20

The mod_wsgi package provides an Apache module that implements a WSGI compliant
interface for hosting Python based web applications on top of the Apache web server.

1) Install mod_wsgi to python: pip install mod_wsgi
 or download and install to Python: https://pypi.python.org/pypi/mod_wsgi
 python setup.py install
 	

https://www.postgresql.org/download/macosx/
https://www.python.org/downloads/
https://pypi.python.org/pypi/mod_wsgi

2) Run the test.py: rom terminal cd into the test.py folder
 mod_wsgi-express start-server
or
 mod_wsgi-express start-server test.py
or
 mod_wsgi-express start-server test.py --port 8080

3) Open the web:
 	 http://localhost:8000/

2. pesto/ Python 2.7

1) Install pesto: compile with Python 2.7
$ pip install pesto

or download and install to Python:
 python setup.py install
	 https://pypi.python.org/pypi/pesto/25

2) Run pesto
$ python test_pesto.py

3) Open the web:
 	 http://localhost:8000/

* test_pesto.py
from pesto import to_wsgi, Response

from wsgiref import simple_server

def handler(request):

 return Response([

 "<html>",

 “<body><h1>Hello World!</h1></body>",

 "</html>",

])

if __name__ == "__main__":

 httpd = simple_server.make_server('', 8000, to_wsgi(handler))

http://localhost:8000/
https://pypi.python.org/pypi/pesto/25
http://localhost:8000/

3. Festo

1) Install fresco
$ pip install fresco gunicorn
2) Run fresco
$ gunicorn Test_fresco:app
3) Open the web:
 	 http://localhost:8000/

* test_fresco.py 	
from fresco import FrescoApp, GET, Response

def helloworld():

 return Response(["<h1>Hello World!</h1>"])

app = FrescoApp()

app.route('/', GET, helloworld)

4. pgdb

1) Install PyGreSQL, need install PostgreSQL first, then
set up pg_config path: /users/yingfenhuang/PostgreSQL/pg96/bin
 $ export PG_HOME=/users/yingfenhuang/PostgreSQL/pg96

 $ export PATH=$PATH:$PG_HOME/bin

Install PyGreSQL
 $ pip install PyGreSQL

* test_pgdb.py
import os

os.environ['PATH'] += ";/users/yingfenhuang/PostgreSQL/pg96/bin"

import pgdb

#Connect to database

try:

 connection = pgdb.connect(user="postgres", password="testpgdb",

database="postgres")

 cursor = connection.cursor()

except:

http://localhost:8000/

 print "\n failed to connect to Database"

 print "\n Exception:", sys.exc_value

Eve Thullen

IST 431 Python Programming

Dec 16, 2017

5. Project Process
- Initial vision and its evolution

- The progress and the final system's capabilities

Version 0: Built in Static Web Page with html in local host

Version 1: Built in Dynamic Web Page with html

Version 2: Built in Dynamic Web Page with Database

Version 3: Built in Dynamic Web Page with CSS

Version 4: Built in Cryptographic Dynamic Web Page

System capabilities:
• User Register and Error Validation

• Front Page Posts and Page navigation

• Add New and Delete Post

• Add Comments to the Post

• Encipher Post and Decipher Post

Tackle the project differently:
One of the most important part of this the project is about encipher and decipher part.

I probably use python Cryptographic library to encrypt the text. However, I designed

my own encipher algorithm to encrypt the text for this project, just for security reason.

Future Version:
Version 5: Burn after Reading

• The user could set up the time for the post, that their post will disappear itself at

specific time.

• Other language version, such as Chinese Version

